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We investigate the stability and instability of pathologies of renormalization 
group transformations for lattice spin systems under decimation. In particular 
we show that, even if the original renormalization group transformation gives 
rise to a non-Gibbsian measure, Gibbsianness may be restored by applying an 
extra decimation transformation. This fact is illustrated in detail for the block 
spin transformation applied to the Ising model. We also discuss the case of 
another non-Gibbsian measure with nicely decaying correlations functions 
which remains non-Gibbsian after arbitrary decimation. 

KEY WORDS: Renormalization group; decimation; non-Gibbsianness; Ising 
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1. I N T R O D U C T I O N  

In  this no te  we discuss some aspects of  the p r o b l e m  of  defining,  o n  r igorous  
g rounds ,  a r eno rma l i za t i o n  g ro u p  t r a n s f o r m a t i o n  ( R G T )  for the G i b b s  
measure  of  lat t ice spin systems of  statist ical  mechanics .  F o r  s implici ty a n d  
wi thou t  a t rue loss of general i ty  (see the end  of  Sect ion 2), we conf ine  our  
a t t en t i on  to the average b lock  spin t r a n s f o r m a t i o n  for the 2 D  Ising mode l  
at low t empera tu re  a n d  large posi t ive external  field. 

In  the basic  reference t4) the au tho r s  discuss in a very comple te  and  
clear way  the possible  pa thologies  tha t  m a y  arise when  app ly ing  a R G T  to 
a perfectly wel l -behaved G i b b s  measure  like the one  above.  To  be m o r e  
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specific, suppose that p denotes the starting Gibbs measure on a proba- 
bility space t2 and that 

v=  rbP (1.1) 

denotes the transformed measure, obtained by applying to /2 a RGT Tb 
acting on "scale" b and defined on a new probability space t2'. The system 
described by the measure ~t and with configurational variables with values 
in t2 is called the "object" system, whereas the system described by v with 
configurational variables with values in g2' is called the "image" system. 

As the authors of ref. 4 point out, the main (rather surprising) pathol- 
ogy of the above RGT is that the renormalized measure v can very well be 
non-Gibbsian, that is, the associated system of conditional probabilities is 
not compatible with any finite-norm potential. That may happen even if 
the starting measure p, e.g., the unique Gibbs measure of some finite-range 
interaction, has all the nice properties describing the one-phase region: 
analyticity, exponential decay of correlations, convergent cluster expansion, 
etc. 

In ref. 4 one can find many examples of such pathology. Moreover, the 
same authors show that the typical mechanism behind the non-Gibbsianness 
of the measure v is the appearance of long-range order, that is, a phase 
transition, in the object system conditioned to some particular configura- 
tions of the image system. Such long-range order implies, in particular, that 
the measure v violates a necessary condition for being Gibbsian, namely 
"quasilocality" of its family of conditional probabilities {rcA} A. Such a 
condition, introduced by Kozlov (see ref. 8 and Theorem2.12 in ref. 4), 
roughly speaking implies some sort of uniform continuity of the condi- 
tional probabilities rc A with respect to the conditioning configuration (see 
also refs. 1 and 5 for a critical discussion). 

An interesting example given in ref. 4 of the above phenomenon refers 
to the "decimation transformation" on scale b, Tb a, applied to the Gibbs 
measure IZp.h of the Ising model at low temperature, fl>> 1, and small 
magnetic field h. Such a transformation associates to the original measure 
Pp.h its marginal (or relativization) on the spin variables sitting on the sites 
of the sublattice Zd(b) of Z d with spacing b. In other words, one integrates 
out all the variables in Zd\zd(b). 

In ref. 4 it was proved that, for any given b and for suitable values of 
fl and h, the measure 

v = Tappj, (1.2) 

is non-Gibbsian. 
This fact is the consequence of the degeneracy of the ground state of 

the Ising model restricted to zd\zd(b) if the conditioning spins at the sites 
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of Zd(b) are held fixed in some suitable, particular configuration, for 
instance, all the spins equal to - 1 ,  and the value of the magnetic field h 
is suitably chosen as a function of the lattice spacing b. Such a degeneracy, 
using the theory of Pirogov and Sinai, leads to a first-order phase tran- 
sition at low enough temperature for the same constrained system. 

One may say that the above "spurious" phase transition comes from 
the fact that, on a too short length scale b (with respect to the thermo- 
dynamic parameters and mainly to h), the system is reminiscent of the 
phase transition taking place at h = 0. It thus appears plausible that the 
above pathology could be eliminated and therefore Gibbsianness recovered 
by choosing a large enough spacing b for given fixed values of fl and h; in 
particular, it should be sufficient to iterate a sufficiently large number of 
times the same transformation in order to come back to the space of 
Gibbsian measures. This is what we actualy proved in ref. 10 together with 
some additional results such as convergence of a cluster expansion for v 
and the convergence of d ,  (Tb) [2#,/, to a trivial fixed point as n ~  oo. 

In ref. 4 there is another, more subtle, example of pathology, referring 
to the so-called "block averaging transformation" for the 2D Ising model. 
This example and the associated pathology are the main object of the 
present note. 

The transformation is defined as follows. Suppose we partition the 
lattice Z z into 2 • 2 blocks Q~ and let us denote by m~ one of the five 
possible values of the magnetization (sum of the spins) inside the block Qi. 
Then the transformed measure 

/~8({ m,.} ) = T 28/.t p.h 

is defined simply as the probability distribution of the variables m = {mi}. 
Here the violation of quasilocality and thus the non-Gibbsianness of 

/xS({m;}) are due to the presence, for large enough/~ and arbitrary value 
of h, of a first-order phase transition in the multicanonical model repre- 
sented by the object system constrained to have zero magnetization in each 
block Qi. Notice that, since the local magnetizations are fixed, the value of 
the magnetic field is irrelevant. Although the proof of this result was given 
only for the case of 2 • 2 blocks, it persists for any even value of the side 
of the blocks Q;, thus excluding the possibility of restoring Gibbsianness by 
simply enlarging the side of the blocks, in contrast to what happens for the 
decimation transformation. 

On the other hand, if, for example, the magnetic field is large, the object 
system without constraints is very close to a product measure and the non- 
Gibbsian measure /zn({m~}) itself enjoys nice mixing properties such as 
exponential decay of truncated correlation functions and, quite likely, a 
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weaker version of quasilocality, such as the one introduced in ref. 5. 
Moreover, it is quite obvious that the event of having zero magnetization 
in each block is exceptional and thus, in some sense, the above pathology 
should be "unstable" with respect to a little bit of decimation at least if the 
surviving variables are separated by a distance larger than the correlation 
length of the original system. 

This kind of consideration was already suggested, on a informal level, 
in ref. 4 (see p. 1066). 

In the present note we pursue the above point of view quite seriously, 
since, in our opinion, the "stability" or "instability" of non-Gibbsianness of 
a measure under decimation is a relevant property. Decimation in fact 
corresponds to select certain variables, which are the only "relevant" ones 
for the kind of question in which one is interested, and disregard (integrate 
out) the "irrelevant" ones; moreover, important thermodynamic quantities 
such as the free energy (and their analyticity properties) or the asymptotic 
behavior of the truncated correlations can be computed equally well with 
the decimated measure. Thus, if Gibbsianness can be restored with the help 
of some decimation, then the pathologies described above become irrele- 
vant at least as far as certain variables are concerned. On the contrary, if 
the measure/1 under consideration is non-Gibbsian and remains of such a 
type after an arbitrary decimation, then such a character becomes, in our 
opinion, a much more important feature of the system described by /1, 
probably related to some nontrivial long-range dependence hidden i:,side 
the system itself. 

In this note we illustrate in full detail the above considerations, first 
for the block spin Ising model (see Section 2) and then for the invariant 
measure of a certain stochastic dynamics on the configuration space 
{ 0, 1 } z '  (see Section 3). In the first case we prove that, if we decimate the 
block spin model on the even blocks (see Section 2 for details) and we take 
the external field h large enough, then we end up with a nice, weakly coupled 
Gibbs measure whose potential is expressed via a convergent cluster 
expansion. To perform the calculation we use the following property, which 
in the sequel will be referred to as commutativity of the block decimation 
with the block spin transformation. The two sequences of transformations 
acting on the original Gibbs measure give rise to the same measure: 

1. First decimate over the even 2 x 2 blocks; then perform the block 
averaging over the surviving blocks. 

2. First perform the block averaging over all the 2 • 2 blocks; then 
apply the standard decimation over the block-spin variables associated to 
the even blocks. 
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In the second case we show that, independently of the side of the 
blocks of the decimation, the decimated measure remains non-Gibbsian 
like the starting measure. 

After the present paper was completed, we learnt of a recent work by 
A. v. Enter, R. Fernandez, and R. Koteck~, where, in particular, the authors 
establish non-Gibbsianness of the renormalized measure v=T'~'rpp, h 
obtained by applying the majority rule transformation, over blocks of side 
b, to the Ising Gibbs measure/~pj, for fl and h large enough. 

One can easily check that, by the same methods developed in Sec- 
tion 2 of the present paper, it is possible to restore Gibbsianness by simply 
decimating the measure v over the even blocks (see Section 2). In other 
words, a statement analogous to the one of Theorem 2.1 holds true. 

2. THE BLOCK SPIN  A N D  D E C I M A T I O N  T R A N S F O R M A T I O N S  

In this main section we discuss in detail the effect of a decimation over 
the odd blocks (see below) on the block spin Ising model for which non- 
Gibbsianness was proved in ref. 4. For simplicity we restrict ourselves to the 
case of large external magnetic field (but see the remark at the end of the 
section for more general situations). 

We show that, after the decimation, Gibbsianness is recovered. As 
already explained in the introduction, a key remark is that the two trans- 
formations, the block spin and the decimation, "commute," as discussed 
before, so that we can first decimate the original Gibbs measure of the Ising 
model and then do the block average transformation. The technical tool is 
the cluster expansion that provides naturally all the necessary cancellations. 
Let us start with the details. 

The Ising Hamiltonian in a volume A ~ Z  e with open (empty) or 
periodic boundary conditions is given by 

H A ( a A ) = - - J / 2  ~. axa . , , -h /2  ~, ax (2.1) 
X , ) , E A  x E A  

where aA ~ ~A - { - 1, + 1 } A and h is the external magnetic field. 
The corresponding finite-volume Gibbs measure at inverse temperature 

fl and magnetic field h is given by 

exp[ -- fl( H A( 6 A) ) ] 
Pa - (2.2) 

ZA 

where the nm:malization factor 

Za = ~', exp[- - f l (HA(aA))]  (2.3) 
OA ~ U2A 

is called the partition function. 
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We will consider the case when both the inverse temperature fl and the 
external magnetic field h are very large. 

For the sake of simplicity of the exposition we will assume that the 
dimension is d = 2. 

Consider the partition of Z 2 into 2 x 2 square blocks Q~ of side 2 (each 
containing four sites). A block Qe can be characterized by its leftmost down 
site x(Q~). The x(Q~) are of the form 

x( ai) - x u~ - ( x~ ~ x~2 n) 
(2.4) 

x]i)=2y] n, xt2i)=2yt2 i) with ym=(y]n,  y~2i))~Z 2 

We write 

Q,= Q(yU)) if ym=x(Q, ) /2  (2.5) 

Now we introduce a partition of the lattice Z 2 into two sublattices Z~ and 
Zo 2 (the subscripts e and o, respectively, stand for even and odd). They are 
given by 

2 Z e . o - { y = ( y l ,  y~)~Z2: yl + y2=eveninteger, oddinteger} (2.6) 

Given a 2 x 2 block Q~ we call it even or odd according to the sublattice 
to which y(O = x(Q~)/2 belongs. 

We decompose the original lattice Z 2 into the union 

Z 2 = ~ w ~ ( 2 . 7 )  

where ~r  is the set of the even blocks A; with x(A~)/2sZ~ and 
= U~ B~ is the set of the odd blocks B~ with x(Bj)/2 ~ ZZo. Notice that in 

our notation we suppose that the total set .~ = Ui Qi of the 2 x 2 blocks as 
well as the sets ~r --- Ui  A; and & = Ui B; of even and odd blocks, respec- 
tively, is given a certain order, for example, the lexicographic one, but this 
ordering will never be used explicitly. 

We use the notation e;, fli to denote, respectively, the spin configura- 
tions inside the blocks A;, B~; ~;, fl; take 2 4= 16 possible values. 

We denote by el, e2, e3, e4 the unit vectors (0, 1), (1, 0), ( - 1 ,  0), 
(0, - 1 ) .  

Given a block Bi = Q,,.~ with x(Qlul)/2 = y(m)~, we denote by A~, A~, 
A~, A~ the four nearest-neighbor A-blocks given by A,J.'= Q(yl~(m+ej), 
j = 1 ..... 4, and by 0c~, ~ ,  ~ ,  0~ 4 the corresponding spin configurations. We 
use _~ to denote the set of spin configurations ~ ,  0c~, ~ ,  ~ in these four 
A-blocks. 
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ct i 
By Z~, we denote the partition function in the block B~ with boundary 

conditions given by _~. 
We call 0 a fixed reference configuration inside a 2 x 2 block; for 

instance, 0 can be chosen to be the configuration with all minus spins 
inside the block. We use 0_ to denote the configuration _ ~ = ~ = 0  
Vj= I,..., 4 in the set A~, A 2, A 3, A,. 4 of nearest-neighbor A-blocks to a given 
B-block B~. 

Given an integer L multiple of 4, consider the squared box A = AL = 
[ --L/2, L /2+ 1] 2. 

We choose, for simplicity, periodic boundary conditions; namely A, by 
identifying its opposite sides, becomes a two-dimensional finite toms. Any 
other boundary condition could be considered as well, with only minor 
changes. 

Using simply 0q fl to denote the global spin configuration in all the 
A-blocks, B-blocks, respectively, contained in A, we can write te following 
expression for the partition function in A (with periodic boundary 
conditions): 

Z A = ~ ZA(o Q (2.8) 

where 

Z A ( ~ ) = e x p (  Y'. H(~t,)) 1-'I Z~, 
Ai~ A Bi~ A 

and, for e~ = aA,, H(e~) is the self-energy inside the block A~: 

(2.9) 

H ( ~ , ) = H a , ( a A , ) = - J / 2  ~" a x a y - h / 2  ~" ax (2.10) 
x ,y~Ai  xEAi 

Expression (2.8) is simply obtained by a decimation procedure; namely by 
first summing over the fl-variables keeping fixed the ~t-variables, which play 
the role of fixed boundary conditions. The sum over the fl-variables, for 
fLxed 0q is immediately seen to factorize into independent sums over the 
single fl; which are mutually decoupled because of the form (nearest 
neighbor) of the Ising interaction. 

By simple manipulations of the previous expression we get 

1 3 

Z~,~,~,~,~zO ~o  Z o 
1-I X I 2 3 4 \ 7~i,o,o.070.~t~.O, O70,O, ai,070,O,O, % 1 -t- 1 

1 2 3 0 cr 4 ~o~i,O,O,O~O, rti,O,O~O,O,o~i,O~O,O, , 
X LB i  L B i  L B i  L B i  (2.11) 

822/79/1-2-3 
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and we define 

B i ~ A  

X I'-[ E . . . . . . . .  i,O,O, Or'nO, oti, O,O,"pO, O,O, oti~O,O,o~l,O\ texp(H(~;) ~ ~s, '  ~ ~s~ ) (2.12) 
A i ~ h  ot i 

where if A,.--Q,~u), we set B{=Q(ym((m+ej),  j =  1 ..... 4, and we use the 
short forms ~ , ,  ~= to denote ~=,~a~,, ~=~a~, respectively. 

A useful graphical way to describe the r.h.s, of (2.12) is to associate to 
any one of the four partition functions appearing in the r.h.s, of (2.11), 

I 2 3 4 
1 . ~a i ,O ,O,O ~ O , a  i ,0 ,0 ~O,O,~xi,O ~O,O,O,a i  namely to Ls, , LB~ , LB~ , LB~ , tour arrows, emerging from 

the block B,. and ending in the blocks A~, A/2, A~, A4; namely four arrows 
parallel to the four unit vectors el, e2, e3, e4, respectively. Then in (2.12) 
there appear the terms (partition functions) corresponding to the four 
arrows ending into the A-block A~ and emerging from the four nearest- 
neighbor B-blocks. 

Consider now, for every A-block A~, the probability measure on ~ 
given by 

7ai,O,O,O70,apO, OTO, O, cci, O70,O,O, ai~ exp(H(0t,.)) ,_. ~ 4 L ~  "J ~ I ] 

v(o~i) = (2.13) 
7C~i,O,O, 070,~i ,O, 070 ,O,  oti, 0 7 0 ,  O,O, ai'~ ~.=,exp(H(o~i) ) ~ z..~ z ~  L s, j 

We set 

7 a i ,  0 , 0 , 0 7 0 , ~ i , 0 , 0 7 0 , 0 ,  o:i,070,0,0,0~i~ 0 
2A, = ~ exp(H(~ L'~, ~s ,  ~ ~ ,  ~S~ / - Z i 4  (2.14) 

where 

"~ 3 4 Vi= A~u B~ u BT u B~ u B i (2.15) 

From (2.12), (2.14) we obtain 

(,)3 
z =  1-I 

Bi=A Z - B  i A i ~ A  

(2.16) 

from (2.11), (2.13), (2.14), and (2.16), we get 

ZA = ZA E 1--[ v(c~j) 1-I ,~.a,,t't' :al;, ,2,, ~ ,  ~4) + 1) 
et A j ~ A  B i c A  

(2.17) 
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where 
I 2 3 4 

7 a l , a t i , a i , a i 7  0 7 0 7 0 

I 0 2 3 4 7 a i , O . . 0 7 0 , a  i , 0 , 0 7 0 , 0 , 0 ~  i , 0 7 0 , 0 , 0 ,  % 

We define the renormalized Hamiltonian as 

1 (2 .18 )  

H~ = ~ H(a,) + ~ - log Z =]'`'~'~'`4 s, (2.19) 
A i ~ A  B i ~ A  

Then after having extracted the one-body part we get 

H ~ =  ~ H(oq.)+ ~ -(l~176176176176176163 = ~ ' ~ 1 7 6  
A i ~ A  Bi~A 

- ~0 0 =~ 0 O,O.O, cL 4 
�9 + l o g  Z s, ) + l o g L ~  ' ' 

Z ~' ~" ~'~"Z o Z o Z o 
+ ~ - l o g (  , ~ , l + c o n s t  (2.20) 

\ ~ a  i ,0, 0, 0 ~ 0 ,  ~r.O, 0 ~  0, 0, ~., 0 ~  0, 0, 0, ~i I 
Bi~A \ L B i  L B i  J L B i  ) L g i  I 

Now we want to use the expression given in (2.17) to make the second 
step; namely the sum over the spin configuration ~ ; -aA,  with given values 
mr of the magnetization mA~-mA~(0~)= Z.~=a~ ax in the blocks Ar 

If N= N(L) is the total number of A-blocks in A, let 

ZA(m] ..... m N ) = ~  II  (1,,A,=,,,,(~i)) ZA(~) (2.21) 
= A i~A  

where 

l . ,a=m,(O~i)  = 1 if mAi: - -mAi (o~ i )  = m  i 

lmAi=mi(O~i) = 0 o t h e r w i s e  

(2.22) 

and ZA(00 has been defined in (2.9)). 
Now we transform our original block spin system, described by (2.21), 

into a polymer system; for this purpose we need some definitions. 
A (four-body) bond pi=p(B~), for a given B~, is the set p~= 

{A~, A~, A~, A,. 4} of the four A-blocks nearest neighbor to B,. 
Its support ffi is given by fii = U~= ] A~. 
A set of bonds R = p~,..., Pk is called a polymer if it is connected in the 

sense that for every pair p;, Pi �9 R there exists a chain Pk~ ..... P*t �9 R, with 
pk)=pe, pk~=pj of bonds which are connected in the sense that 
pk, c~ p,,+~ v a ~j, i= 1,..., L 
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We call a support of a polymer R and we denote by/~ the union of the 
supports p~ of the bonds p ~  R. 

We say that two polymers Ra and R 2 are compatible i f / ~  ~/~2 = ~ .  
We set 

~R(~)  I-I ~ z 3 oct) (2.23) = ~ I B i ( ( X i ,  O~ i , O~ i , 
p (B i}~  R 

Now let 

with 

Za(ml ..... raN)= H ZA,(rn,) (2.24) 
A i ~  A 

Let 

Za,(mi) = ~ v(oti) 1,,,,=,m(~,) (2.25) 

li,,,(o~)- 1/ZAi(m,) v(~) 1,,A,=,,,(a;) (2.26) 

From (2.8), (2.9), (2.11), (2.17), (2.21), (2.24), (2.25) it is easy to get 

Z.dml ..... raN) 

2AZa(ml ..... mN) 

= H Z/*,.,(~,)(I+ Y~ ~ (I ~'R,(~R,)) 
A i ~ A  o~i n>~ I RI,..., Rn: iffi l 

1~i~-- A , ~ i ~  ~ j ~  

(2.27) 

Now, if we introduce the activity ( (R) -  (,,,(R) of a generic polymer R as 

~(R) = l-[ ~/~,,i(~;) ~R(0CR) (2.28) 
Ai ~ R o,i 

we can write 

ZA(ml raN) 
= 1 + y. Y[ 1-[ {(R,) (2.29) 

ZaZa(ml,..., raN) ,>_-I R,..... R,: ;=1 
l~i=-a.~i~ Rj= r 

Now we observe that in the region of thermodynamic parameters that we 
are considering, namely h and /3 large, the activity of our polymers is 
indeed very small, uniformly in the mi, in the proper sense so that we can 
apply the theory of the cluster expansion and obtain its convergence. As we 
will discuss later, one could simply assume h r 0 and /3 sufficiently large 
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provided the 2 x2  blocks are replaced by blocks of large enough side 
(depending on h and fl). 

In our case of h very large everything is much simpler since after 
decimation our system is weakly coupled on scale one. 

In particular it is easy to get the following statement: 

P r o p o s i t i o n  2.1. For every e>O there exists a value h(e) of the 
magnetic field such that if h > h(e) and fl is sufficiently large, then 

sup [~s,(~,  ~ ,  ~ ,  ~)1 <e  (2.30) 

From the previous proposition one can easily deduce, by standard 
methods, the convergence of a cluster expansion of the thermodynamic as 
well as the correlation functions. The elementary geometric objects of this 
expansion will be clusters of incompatible polymers (see, for instance, ref. 6 
for more details). Many properties for the image block-spin system (after 
decimation over the odd B-blocks), described by the probability measure 
with weights proportional to ZA(ml  ..... mN), can be deduced using this 
convergent cluster expansion. 

We will concentrate now on one important feature of this measure, 
namely its Gibbsianness. 

First of all let us introduce the doubly renormalized Hamiltonian, 
after decimation on the odd B-blocks and block-averaging over the 
surviving even A-blocks. We will denote it by H~d(ml  ..... mN), where in the 
superscript b, d stand for block spin averaging transformations and for 
decimation transformation, respectively. 

We define it as 

H~'d(rnl ..... raN) = --log ZA(ml  ..... raN) (2.31) 

which corresponds to a particular choice of the zero of the energy for our 
doubly renormalized system (namely obtained by decimation and block 
spin transformation). 

Our doubly renormalized probability measure is 

ZA(ml  ..... rntc) b,d /aA (ml ..... mar) = Z,,,, ........ ^, Z A ( m ,  ..... mA,) 

exp( -- Hb'a(ml ..... mar)) 
= Z,.,  ...... . exp( --Hb'a(ml ..... mN)) (2.32) 

We now state and prove our main result about the Gibbsianness of our 
doubly renormalized measure/a b'a in the thermodynamic limit A -o Z' .  
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T h e o r e m  2.1. If the external magnetic field h and the inverse tem- 
perature fl are sufficiently large: 

(i) There exists the (weak) thermodynamic limit of the finite- 
volume, doubly renormalized measure 

I.tb'd( m , ..... raN) = )Lmzz l.t ~id( m , ..... raN) (2.33) 

(it) gb'a(m] ..... raN) is a Gibbs measure corresponding to a finite- 
norm, translationally invariant, potential. 

P r o o f .  The proof of the theorem is based on the theory of cluster 
expansion applied to the system of polymers described by (2.29). For this 
purpose let us recall a proposition which summarizes the basic results on 
cluster expansions that we need in order to prove Gibbsianness. 

The proof of the proposition together with more details can be found 
in ref. 2. 

P r o p o s i t i o n  2.2. Let 3a denote the polymer partition function: 

k 

~A = 1 + ~ ~] 1-I ~(Rj) (2.34) 
k >1 1 RI,.... Rk: j =  I 

~ic::: A , l  <~i<~k, 
~ir ~ i , = O , I  <~i<i' <~k 

Suppose that if(. ) is translationally invariant and that there exist two 
positive constants a and gp such that the following estimate holds: 

Iff(R)l ~<a Inl 1-'[ gp (2.35) 
p e r  

Let ~ be the set of all the bonds in the whole lattice and let x be given by 

= ~ gp (2.36) 
p e ~ : p ~ A o  

Then, if the following bound holds: 

1 
exp(x) < ,v/~(2 _ v/.~) (2.37) 

we have 

[ 1 - ( e K -  1)] = - G ( x , a )  (2.38) 
IC(R)I ~<aK ~+ ~2e----~ 2a---~ 

R: AO ~: h c: A 
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uniformly in A, and if ~ is the set of all the polymers in the whole lattice, 
for any polymer R e ~ ,  

k 

~ Io(R, ..... Rk)l H I((R,)I 
k ~  I RI,..., R k e ~ :  i= 1 

R I = R  

exp[G(x, V/'a)IRI] 
~< [((R)[ 1 - x / ~  exp[G(x, x/~)] (2.39) 

Here a denotes the standard M6bius function: 

1 o(Rl ..... Rk)=-~. ~ ( - - I )  #{~dg~si" ~ (2.40) 
g e G( Ri ,..., Rk) 

where G(R~ ..... Rk) stands for the set of all connected subgraphs of the 
graph with k vertices { 1 ..... k} and with the edges corresponding to those 
pairs (i,j) for which /~;c~/~1r [the sum in (2.40) equals zero if 
G(R1,..., Rk) is empty and one if k = 1 ]. 

By using Proposition 2.2, we can control the convergence of the 
standard cluster representation 

E~ = exp ~ o(Rx ..... Rk) ((Rj) (2.41) 
k ~  1 RI,..., Rk: 

which follows from (2.34), (2.38), (2.39). {6) 
Let us now conclude the proof of the Theorem. Part (i) easily follows 

from Propositions 2.1 and 2.2 and standard methods of the theory of 
cluster expansion. (6~ 

To get part (ii) we start from the following expression for the 
Hamiltonian H~d: 

k 

H~ a= ~ ~ Q(R] ..... Rk) H ((Rj)-- ~ log Z,4,(m,) (2.42) 
k ~ l  RI,...,Rk: j = l  A t ~ A  

]~l~--A,] ~ i ~ k  

which follows from (2.29), (2.31), and (2.41). We recall that the activities 
((R) =(mR(R) depend on the fixed values of mR= {m~} with i such that 
a i ~ R .  

The potential ~ can be obtained in the following way. Given a set F 
of A blocks, F =  {A;, ...A~k } and mr= {m,~ ...m~k }, K >  1, we define 

J 

~'r(mr) = ~ ~. Q(R~ ..... Rj) H (mR,(R,) (2.43) 
j < . k  RI,...,Rj: i = 1  

U ~j=r 
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Formula (2.43) is a straightforward consequence of the M6bius inversion 
formula 

~r(mr)=(--1) In ~ (--1)lrI H~'a(m~,) 
y ~ r  

relating potentials to Hamiltonians. 
We can now estimate from above the usual norm of the potential 

~(m) - { ~Yr(mr)} r=~,, with IFI > 1 

II~Ull = ~ sup I~gr(mr)l 
F : A o ~ F  m F  

as follows: 

k 

II ~11 ~ ~ ~ Io(R1 ..... Rk)l l-I sup Iffmj(Rj)l (2.44) 
k ~ l RI  ,..., Rk  ~ ~ :  j ~ l m j  

A o = U  ~i  

From Propositions 2.1 and 2.2 and in particular from (2.38) and (2.39) we 
get that, for h and fl sufficiently large, the r.h.s, of (2.44) is finite. The proof 
of the theorem is completed. 

Remark .  In the above argument we always assumed the external 
field h to be large only for simplicity. We could have covered the case of 
small field h and large (depending on h) inverse temperature fl by simply 
replacing the 2 x 2 blocks in our construction by l x l blocks, with l = C/h 
and C>4 ,  e.g., C=5 .  With this choice one has in fact that the 
Hamiltonian of a single block B,~ has a unique ground state identically 
equal to plus one, independently of the boundary conditions e~...0c~. In 
particular, it follows that 

lim ~h(~.. .  0q 4) = 0 
f l~ oo  

and the convergence of the cluster expansion can again be proved. 
Of course, in the above argument the fact that the unique ground state 

is the special configuration identically equal to plus one is completely 
irrelevant. Thus the above method is able to treat systems at low enough 
temperature having the property that the ground state in a large enough 
volume is unique and independent of the boundary conditions. 

One may also want to consider much more general cases in which 
the thermodynamic parameters guarantee only a strong form of weak 
dependence of the finite-volume Gibbs measure on the boundary condi- 
tions, which we call strong mixing (see, e.g., ref. 11 and references therein). 
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This is the case, for example, of 2D ferromagnetic systems just above the 
critical pointJ ~]) In such more general situations, even if the side of the 
blocks is large, the decimation over the odd blocks may not be enough to 
depress some long-range dependence in the doubly renormalized measure 
and one is forced to decimate further. One may stop the extra decimation 
until each surviving block, namely the blocks of the final block spin trans- 
formation, are separated from one another by at least one block of the 
decimation. We shall omit the details of these computations, which are 
quite similar to the ones exposed above. 

3. AN E X A M P L E  OF PERSISTENCE OF N O N - G I B B S l A N N E S S  
U N D E R  D E C I M A T I O N  

In this last section we briefly discuss another example of a measure/ l  
on {0, 1} z2 with nicely decaying correlations functions, which is non- 
Gibbsian and remains such even after decimation on blocks of arbitrary 
side. The example comes from a model of random discrete-time dynamics 
introduced in ref. 12 and further analyzed in ref. 9. 

The setting is as follows: to each point x in the lattice Z 2 we associate 
an occupation variable a(x) with value 0 or 1; given a configuration 

~ {0, 1 } z2, we then define its clusters as the maximal connected sets of 
sites in which the configuration a is equal to one, where a set C c Z  2 is 
connected if for any pair of sites x, y e C there exists a path x], x2,..., x,, of 
sites in C such that 

x l = x ,  x , , = y ,  and [ x i - x i + l ] = l ,  i = 1  ..... n - 1  

With this position the dynamics goes as follows: given the configuration 
g, ~ {0, 1 } z2 at time t, in order to define the new configuration g,+~ at time 
t + 1, we first remove each cluster of a, independently of one another with 
probability 1/2; as a second step we create particles in each empty site 
independently with probability p. 

For brevity we will refer to the first part of the updating as the 
annihilation of particles and to the second part  as the creation of particles. 
Note that both processes occur simultaneously (i.e., the updating is 
parallel) and that the nontrivial interaction of the model is all contained in 
the killing prooess. 

The above dynamics is similar to a model considered by Grannan and 
Swindle, ~7) although in their model clusters disappear with a rate propor- 
tional to their size. The two main results that we need from refs. 12 and 9 
are the following: 
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Theorem 3.1. (i) For p sufficiently mall there exists a unique 
invariant measure p on { 0, 1 } z-" for the above dynamics and its truncated 
correlations decay faster than any inverse power (see Corollary 5.1 in 
ref. 9). 

(ii) If /2N denotes the event that the cube AN of side N centered at 
the origin is filled with particles, then there exists a constant c such that 

/./(ON) ~ exp( -- cN) 

(see Theorem 5.1 in ref. 12). 

In particular, part (ii) of the above theorem implies that the measure 
/1 cannot be the Gibbs measure for any absolutely summable interaction, 
since it has wrong large deviations: an exponential of the surface instead of 
an exponential of the volume (see, e.g., ref. 4 for more details). 

R e m a r k .  It is important to observe that the measure p is non- 
Gibbsian for reasons which are very different from the ones behind the non- 
Gibbsianness of the block spin (without decimation) Ising model discussed 
in Section 2. There Gibbsianness is lost due to the fact that, conditioned to 
the event of having zero magnetization in each 2 x 2 block, the original 
spin model undergoes a phase transition/4~ Here, on the contrary, 
Gibbsianness is violated because the measure p has zero relative entropy 
density with respect to the fi-measure concentrated on the configuration 
identically equal to plus one} 4~ Clearly the latter is non-Gibbsian because 
it violates the nonnullity condition or absence of hard-core interaction (see 
ref. 4, 4.5.5 and 2.3.3). We actually suspect that /z  itself violates the non- 
ullity condition, but we do not have a formal proof of this. 

Keeping in mind such a difference between the block spin Ising model 
and the present one, it is not entirely surprising that a decimation can sup- 
press the phase transition in the first one and thus restore the Gibbsianness, 
while it is useless in this new situation, where the non-Gibbsianness is due 
to a much stronger and more rigid phenomenon. 

We want now to apply the usual decimation described in Section 2 
to the measure p and show that it leads to a new measure /~d, bt which is 
again non-Gibbsian irrespective of the side ! of the blocks on which the 
decimation acts. 

As before, let us consider the partition of Z z into I x I square blocks Qi 
of integer side I and let us decompose the lattice Z 2 into the two odd and 
even sublattices Z~ z and Z .  z, namely 

Z 2 = ~ C u ~  (3.1) 
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where ~r = 01 A; is the set of  the even blocks and ~ = 1,)+ B; is the set of  
the odd blocks (see Section 2 for more details). Let us also call/~a.b~ the 
projection or relativization of  the measure p to ~ .  Then we have: 

Theorem 3.2.  For  any value of  the decimation parameter l the 
measure pd, b~ is not  Gibbsian for any absolutely summable interaction. 

Proof .  Let us denote by I2~v the event that all the even blocks A 
contained inside the cube A u of  side N centered at the origin are filled with 
particles. Then we trivially have 

Itd'b'(g2~) =/2(O~v) ~>p(ON) /> exp( - -cN)  

Thus also the decimated measure i ~u'b~ has wrong large deviations and the 
result follows. 

Remark. We want to remark that, by the same argument used before 
for the decimation in one of  the two L-block sublattices, it is immediate to 
prove that the non-Gibbsianness of  our  measure /~ persists under any 
extensive decimation; namely a decimation such that the surviving spins, 
even though they can be very sparse, have a well-defined volume density. 

R e m a r k .  We notice that the above example is a particular case of 
a general situation which can be described as follows: We start from a 
measure/ t  having zero relative entropy density w.r.t, a delta measure; so by 
general arguments,t4~/z is not Gibbsian. 

We then apply to/1 any deterministic renormalization-group transfor- 
mation T (decimation, averaging, majority rule over odd blocks,...; see 
ref. 4). Lemma 3.3 in ref. 4 implies that the transformed measure T/t still 
has zero relative entropy density w.r.t, a new delta measure; thus T/~ is non- 
Gibbsian as well. 
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